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1 Surmiary

Let X =(X 1 9 ... , X ) ~N (X, Z) where IA=(l,.. i)and

E diag(a2, ... , 2)are both unknown and p a 3. Let (ni 2)w /0? q. 2

independent of w.i (i 9 1, ... , p). Assume that (w1,., w ) and X are

independent. Define 1 diag(w1 , ... , w )and III2 =.1-1 I I hr

Q - diag(ql, ... , qpq > O,i = 1, .. ,p. In this paper, the minimax

estimator of Berger and Bock (Ann. Statist. 4 (1976), 642-648), given by

AQ W) - 11 - r(Q, WV) 11 XIm2 0 - 1 1]Z, is shown to be minimax relative to
p

.)'[aQ + ( -l
the convex loss (-)cQ (-)E](A-X)/C, where C = a tr(EQ) + (l-a)p

and 0 !5 a :9 1, under certain conditions on r(X, K~). This generalizes the

above-mentioned result of Berger and Bock.

I This work was supported by the Army, Navy and Air Force under Office
of Naval Research Contract No. N00014-80-C-0093. Reproduction in whole or
in part is permitted for any purpose of the United States Government.
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1. Introduction. Let X = (X1, ... , X p be a p-variate (p 2 3)

random vector normally distributed with mean y - (ul, ..., P) and co-

2 2 2variance matrix E = diag~(o1  . a p) where a, i=1,*. p, are unknown.

1his paper obtains a class of nini,,ax estimators for p '.hen t1he loss in-

curred in estirtatin, k by 6 is given by

(1.1) L(g; , E) = (5- )[Q * (l-a)E l](g-£)/C,

where 0 ! a -5 1, C = a tr(QE) + (l-a)p, and Q is a known rxp dia.onal

matrix with diagonal elements qi > 0, i = 1, ..., p. The loss (1.1) is

a convex combination of two commonly used loss functions, namely

(1.2) LI(6; , E) = ((-8)Q(-)/tr(QE)

and

(1.3) L2 (S; , ) = (Q)I-l)/p.

The loss function L1 (8; 2, E) may be used when the relative importance

cf the parameters to be estimated is reflected by a known set of weights

represented by Q, while the loss L2 (6; , E) represents the case when the

relative importance is reflected naturally by the inverse of the covariance

matrix of the variables. In the literature, statisticians tend to use

either LI(8; x, 1) or L2(Q; , ) as a loss function. In the convex loss

(1.1) we have combined both viewpoints in such a way that the more a is

near 1 the more loss is to be assessed by LI(Q; y, ), and vice versa.

It is clear that the maximum likelihood estimator, X, is minimax with

risk R(Q, y) * E L(X; , ) * 1. Thus an estimator A will be minimax under
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loss (1.1) if and only if R( , p) - Ra, ) a 0 for all M and E. In evalu-

ating the difference in risk it is necessary to impose certain conditions

on E. Specifically, the values or bounds of the trace of E- Q-, denoted

by tr(E'lQ'I), and the minimum characteristic root of QE, denoted by

chmin (QE), will be assumed. Similar conditions have been noted by various

authors. For example, Gleser (1976) shows that if a lower bound for

Chmin(QE) is known then a family of minimax estimators for p can be ob-

tained under the loss function LY(A; X, E); otherwise no estimator of the

form [Ip - h(X'W IX)Q W -I]X can be minimax for y unless h(u) = 0 for

almost all u a 0 where W n. W(n, E) independent of X and h: R * R is a

real function satisfying certain conditions. In our case where both 0

and E are diagonal matrices a sufficient set of conditions on £ would be

(1.4) max W!}C I/c and min {ca4} llc
l~isp Il:igp ' 2

for some positive constants cI and c 2 (0 C 1 !5 c 2 <-). This set of

conditions on E is not unreasonable in application.
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2. Useful Lemmas. In establishing the minimaxity of an estimator

of the mean of a multivariate normal distribution the following lemmas are

very useful. They are presented here for ease of reference and without

proof.

Lemma 2.1. [Stein (1974)]. Let Y " N(O, 1) and let g be an absolutely

continuous function, g: R + R. Then

E Y[g'(Y)] = Ey[Yg(Y)]

provided that all expectations exist and are finite.

Lemma 2.2. [Efron and Morris (1976)]. Let U " X2 and let g be as

defined in Lemma 2.1. Then

Eu[Ug(U)] = nE [g(U)] + 2Eu[Ug'(U)]

provided that all expectations exist and are finite.

Corollary 2.2.1. Let U and g be as defined in Lemma 2.2. Let

Z = cU/(n-2), c > 0, and h(Z) = p[(n-2)Z/c]. Then

Ez[(n-2)Zh(Z)/c ] = nEzh(Z) + 2Ez[Zh-(Z)]

provided that all expectations exist and are finite.

Lena 2.3. [Lehmann (1966)]. Let S be any random variable, and let

Pl(S) and P2 (S) map the real line into itself. If pl(S) and P2 (S) are either

both nonincreasing in S or both nondecreasing in S, then

s[PI(S)P2 (S)] a E s[Pl(S)]EsIP2(S)].
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Note that Lemmas 2.1 and 2.2 may be proved by integration by parts

and the corollary by the indicated change of variable. Lemma 2.3 follows

from a new concept of dependency, namely the positive quadrant dependence,

introduced by Lehmann (1966). The above results will be employed in the

proof of the main theorem in the next section.

!1
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3. Main Result. Let X be a p-variate (p 2 3) random vector normally

distributed with unknown mean k and unknown covariance matrix

Z = diag(a2, ..., a2). Assume that (n1 2)w a? ,. (ni > 2), i = 1, ..., p,

where w. and w. (i * j = 1, ..., p) are mutually independent and are inde-
i j

pendent of X. As in Berger and Bock (1976), define V1 = diag(w1 , ... , w,

T = main (X2./n.), and T = Tin 1  .. ,rp) = E(T_ 1). I ,the following theorem
l~i<-p I

we will obtain a class of minimax estimators for relative to the loss

function given by (1.1).

Theorem. The estimator

(3.1) Aqcx, W) = [P - r(x., W)jxI l- 2Q'W'1 A

is minimax for P relative to the loss function (1.1) with Q diag(ql, ... ,

2 -1 -1 -1where I = X11 Q W X , provided that the following conditions are

satisfied

2(c(p-2-r) + (l-a)(tr(E Q- ) - 2chmaxC(Z l]M
(i) 0 r(, W) -1-1 witha * €l-a)Ch a( IQ-I)

i(p-2r) + (l-a)[tr(' 1 Q 1) - 2TChmax(E IQ-l)] -> 0 and 0 5 a < 1,

( I,
(ii) r(X, i) is nondecreasing in wiX1, i = 1, ..., p

(iii) r(X, W) is nonincreasing in wi, i = 1, ...,p

(iv) rix, W)llxlI 2 is nondecreasing in wi, i = 1, ... , p.

Proof. Write 8 = A(x, 1V) and r = r(X, W). Let A = R(Q, M) - R(S, Y).

Then

(3.2) C& EW'xj2rlIXI * )"LC.Q (1-a)El IQ- W'lx

-r2 XI 1 I-[,Q s y-,) I IQ'l

=2[*A1 * (I-C)A2], say,
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4 where

A1 E [xrIIXlII 2 (Xy W1 X -r2 IIXII- 2 /21

and

11 X2  -~f~ 2  ~ 1 -1 - 1X 2144-- 1Q-IE IIQIw4 *1'' 1 X]

In the following we will find appropriate lower bounds for A 1 andA2

which, in conjunction with Condition (i), will establish that A 0. But

a lower bound for A 1 has been obtained by Berger and Bock (1976, Eq. (2.10)),

namely

(3.3) a1 2 E {EWd(rIIXIl -) (p -2T - E,(r/2)]).

W~e will proceed to find a lower bound for a 2. Let

(3.4) A2  A21 +A 22

where

(3.S) a 2 1 =WXrll

and

(3.6) A 22 = [~(1/2)r 2 11X11- 4 XW1 Q 1ElQ- W1IX]

Then, taking expectation with respect to first and then W, and by an

application of Lemma 2.1, we have
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(3.7) a 1  E I XrJ11I -2X )fi_~

=Ej 149 a (11X 21.
'-t.5X q-w Wx rI I Xj

22rX. X.
- EXLL[,114 2 2 Xi i

p 2

' E WP[r 1 1rP X

The last inequality follows from Condition (ii) since X.(Dr/aX. 0 for
1

allI i = 1, .. ,p. The f irst term in the right -hand s ide of (3. 7) may be

further evaluated by taking the expectation first with respect to W and

then with respect to X. Recall that (n.i 2 2aXn Then, it follows

from Corollary 2.2.1 with h(w)= r/(III~. that, for each i = 1, ... , p

rr n.2 J2rX - r
n.E = 2 -a I E r 2E 1 1r r___ __

Therefore,

F4rX 2
r ri 2a(3.8) EW'X[T jq'' 1lI 1~w

r, i 1R IrIW2 07 (n.- 2) 11XII~ w (n.-2) W ~I

?WX 11I 2 a2 (n.-2) _I IIqiwj



into the last expression of (3.7), we have

(3 9) A r1 2: Et 17z 3 2
21 W 7 W i~l(ni-2)qiw

i

r 1- 2r ni i 1

max - Xi2i=2 .2, T-1-4 - - -1
a EW ,X 1 2 "2" maxi_2p 1 c72

X -1I ilOiqi  11XI1I g ~ ii

> EWX{ (r1111 W2)(tr(E 'Q " ) - 2T- Ichmax (E1 0- 1)] .

Substituting (3.9) and (3.6) into (3.4), we obtain

(3.10) A2 a EW,X((rIXII
2 ) [tr(E'IQ-1)-2T'lchmax(E 1 Q- 1) - (r/2)chmax( .-1Q-1 )1}

E X X(EW(r]]jI W 2 ) [tr(E°10"l)-2TChMax(E-'lQ-1)-EW(r/2)Ch max('-lQ-1) ]

The last inequality in (3.10) is obtained by an application of Lemma 2.3 since

rIIjZI 2 is nondecreasing in w and

[tr(E£ Q- I)  2T'1 ch max(EIQ) - (r/2)ch max(E - Q-l)] is also nondecreasing

in w. for i = 1, ..., p, and since w. and w4 (i = j) are mutually independent.1L 1

Hence, upon the substitution of (3.10) and (3.3) into (3.2), we conclude that

(3.11) CA/2 = aI + (1-a)A2

x (ci(p-2T) + (1-a)[tr(E Q 1 ) - 2T chmax(E -1Q )]

- [a + (1-a)chmx (E 1 QI)JEW(r/2))).
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By Condition (i), it is clear that the last expression of (3.11) is non-

negative for all pi and Z and hence 8 is minimax proving the theorem.

Remarks. (1) Unless Condition (i) is satisfied, the theorem is vacuous.

Thus it is required not only that tr(E- Q_ I and ch CE Q )beknwnbu

that, for 0 : a 1,

(3.12) a(p-2T) + (1-ca)(tr(E 1 Q) 2T ch m(E Q_ A 0.

On the other hand, if there exists positive constants c1 andc

(0 < c1 : c2 < w)such that (1.4) holds or, equivalently,

-1 -1ch. (E ) 2!c, ch (zmin1 max2

and

p 2 [a + (l-ci)c 2 ch a(Q_ )]/[ai + (1-ca)c ch i(Q_ )11

then the theorem remains true with Condition Ci) replaced by

-12{ct(p-2r) + (l-a)(c 1tr(Q
1 - 2T C2chmxQ 1

i 0 :5 r (4, 1) :5 1
*C-c2  hmaxC )

(2) Berger and Bock (1976) show that the estimator M(, WV) given by

(3.1) is minimax for under the loss L1(Q; ~,E) and that there exists a

large positive integer N such that, for all ni -I N, p-2r > 0 and p a 3.

Furthermore, they provide a formula for calculating T when the n Is are even.

In this paper, we employ their method of proof to establish our result. It

should be noted that our result reduces to theirs when a = 1



I:I
10

References

Berger, J.O. and Bock, M.E. (1976). Combining independent normal mean
estimation problems with unknown variances. Ann. Statist. 4, 642-648.

Efron, B. and Morris, C. (1976). Families of minimax estimators of the
mean of a multivariate normal distribution. Ann.Statist. 4, 11-21.

Gleser, L.J. (1976). Minimax estimation of a multivariate normal mean with
unknown covariance matrix. Technical Report No. 460, Purdue University.

Lehmann, E.L. (1966). Some concepts of dependence. Ann. Math. Statist. 37,
1137-1153.

Stein, C. (1974). Estimation of the parameters of a multivariate normal
distribution, Part I, Technical Report No. 63, Stanford University.



;f=RITY CEMBIFICATION OF THIS PAGE
REPOR DO(AMETI TICOJ PAGE

. EPORT NLI4BER I 2. GOVT ACCESSION NO. 1 3. REIPIE-'S CATALOG NL1BER
FSU No. M591 [ F-,
ONR No. 153

4. TITLE (and subtitle) 1 5. TYPE OF REPORT & PERIOD COVERED
Minimax Estimation of a Multivariate Normal Technical Report
Mean under a Convex Loss Function 6. PERFORIZNG ORG. REPORT NUMBER

FSU Statistics Report M591
7. AUTHOR(s) 1 8. CONrRACT OR GRANT NLU4BER(s)

Pi-Erh Lin and Amany Mousa ONR No. N00014-80-C-0093 /
9. PERFOIRMING OICANIZATICO NAME AND ADDRESS 110. PIOGRM EIE)LENT, PROJECT, TASK ARFI

The Florida State University I & WORK UNIT NU4BERS
Department of Statistics
Tallahassee, Florida 32306 I

!I. CNRLLING OFFICE NAME AND ADDRESS 112. REPORT ITE
Office of Naval Research I August, 1981
Statistics and Probability Program 113. NUMBER OF PAGES
Arlington, Virginia 22217 I 10

L4. iX4I iRING AGENCY NadE & ADDRESS (if 115. SECURITY CLASS. (of this report)
different from Controlling office) I Unclassified

115a. DECLASSIFICATIOOIXWNGRADING
I SCHEDJLE

.6. DISTRIBUTION STATEMEtrr (of this report)

Approved for public release: distribution unlimited

L7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fran report

:B. SUPPLEMENTARY NOTES

19. KEY WORDS

Unknown variances, convex combination of loss functions, risk function.

20. ADSTRACT (Continue on reverse side if necessary and identify by block number)
Let X = (XI, ... , X) N(, E) where y = (pi ... , p )' and Z = diag ( ... C

are both unknown and p - 3. Let (n.-2)wi/o? " X2  independent of w. (i r = 1 .... r

Assume that (w1, .. , Wp ) and X are independent. Define W = diag(w I p ... , w p) and

11xl11 = X1-Q- W x where Q = diag(ql, ... , qp), qi > 0, i = i ... , p. In this paper,

the minimax estimator of Berger and Bock (Ann. Statist. 4 (1976), 642-648), given by

A(, W) = [I - r(X, W)II XI[2Q-W]x, , is shown to be minimax relative to the convex los

S(6-t'[tQ + (l-c)E-](A-,)/C, where C = a tr(EQ) + (l-a)p and 0 _< a 5 1, under certain

conditions on r(X, W). This generalizes the above-mentioned result of Berger and Bock.


